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Abstract. Since the strange quark has a light mass of order O(ΛQCD), fluctuations of sea ss̄ pairs may play a
special role in the low-energy dynamics of QCD by inducing significantly different patterns of chiral symmetry
breaking in the chiral limits Nf = 2 (mu = md = 0, ms physical) and Nf = 3 (mu = md = ms = 0).
This effect of vacuum fluctuations of ss̄ pairs is related to the violation of the Zweig rule in the scalar
sector, described through the two O(p4) low-energy constants L4 and L6 of the three-flavour strong chiral
lagrangian. In the case of significant vacuum fluctuations, three-flavour chiral expansions might exhibit
numerical competition between leading- and next-to-leading-order terms according to the chiral counting,
and chiral extrapolations should be handled with special care. We investigate the impact of the fluctuations
of ss̄ pairs on chiral extrapolations in the case of lattice simulations with three dynamical flavours in the
isospin limit. Information on the size of the vacuum fluctuations can be obtained from the dependence of
the masses and decay constants of pions and kaons on the light quark masses. Even in the case of large
fluctuations, corrections due to the finite size of spatial dimensions can be kept under control for large
enough boxes (L ∼ 2.5 fm).

In order to achieve a better understanding of non-per-
turbative features of the strong interaction, it is interest-
ing to recall the particular mass hierarchy followed by the
light quarks:

mu ∼ md � ms ∼ ΛQCD � ΛH , (1)

where ΛQCD is the characteristic scale describing the run-
ning of the QCD effective coupling and ΛH ∼ 1 GeV the
mass scale of the bound states not protected by chiral sym-
metry. Therefore, the strange quark may play a special role
in the low-energy dynamics of QCD:
(i) it is light enough to allow for a combined expansion of
observables in powers of mu, md, ms around the Nf = 3
chiral limit (meaning three massless flavours):

Nf = 3 : mu = md = ms = 0 , (2)

(ii) it is sufficiently heavy to induce significant changes
in order parameters from the Nf = 3 chiral limit to the
Nf = 2 chiral limit (meaning two massless flavours):

Nf = 2 : mu = md = 0 ms physical , (3)

(iii) it is too light to suppress efficiently loop effects of
massive s̄s pairs (contrary to c, b, t quarks).

These three arguments suggest that s̄s sea-pairs may
play a significant role in chiral dynamics leading to different
behaviours of QCD in Nf = 2 and Nf = 3 chiral limits.

� LPT is an Unité Mixte de Recherche du CNRS et de
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Then, chiral order parameters such as the quark condensate
and the pseudoscalar decay constant,

Σ(Nf ) = − lim
Nf

〈ūu〉 , F 2(Nf ) = lim
Nf

F 2
π , (4)

would have significantly different values in the two chi-
ral limits (limNf

denoting the chiral limit with Nf mass-
less flavours).

The role of s̄s pairs in the structure of the QCD vacuum
is a typical loop effect. Therefore, it should be suppressed
in the large-Nc limit, and it can be significant only if the
Zweig rule is badly violated in the vacuum (scalar) channel
JPC = 0++. On general theoretical grounds [1], one expects
s̄s sea-pairs to have a paramagnetic effect on the chiral
order parameters. The latter should decrease when the
strange quark mass is sent to zero: for instance, Σ(2; ms) ≥
Σ(2; ms = 0), and similarly for F 2. This corresponds to

Σ(2) ≥ Σ(3) , F 2(2) ≥ F 2(3) . (5)

However, the size of this paramagnetic suppression is
not predicted.

This effect can also be discussed in terms of the Eu-
clidean QCD Dirac operator, more precisely of its eigen-
value spectrum (with an appropriate weight over the glu-
onic configurations) [2,3]. Chiral order parameters are re-
lated to the accumulation of the lowest eigenvalues in the
thermodynamic limit. For instance, the quark condensate
can be interpreted as the average density of eigenvalues
around 0. In this language, the Zweig-rule violating effect
due to s̄s pairs corresponds to multi-point correlations in
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the density of eigenvalues around 0 [1]. The size of the
paramagnetic suppression (5) depends on the importance
of such correlations which can be interpreted as fluctua-
tions1.

Thus, it is highly desirable to extract the size of the
chiral order parameters in Nf = 2 and Nf = 3 limits from
experiment. Recent data on ππ scattering [4] together with
older data and numerical solutions of the Roy equations [5]
allowed us to determine the two-flavour order parameters
expressed in suitable physical units [6]:

X(2) =
(mu + md)Σ(2)

F 2
πM2

π

= 0.81 ± 0.07 , (6)

Z(2) =
F 2(2)
F 2

π

= 0.89 ± 0.03 . (7)

A different analysis of the data in [4], with the additional
input of dispersive estimates for the scalar radius of the
pion, led to an even larger value of X(2) [7]. In any case,
X(2) and Z(2) are close to 1, so that corrections related to
mu, md �= 0 (while ms remains at its physical value) have
no significant impact on the low-energy behaviour of QCD.
In turn, two-flavour chiral perturbation theory (χPT) [8],
which consists in an expansion in powers of mu and md

around the Nf = 2 chiral limit, should suffer from no
particular problems of convergence. Indeed, its two O(p2)
low-energy constants F 2(2) and Σ(2) are dominant in the
expansions of the decay constant and mass of the pion.

Unfortunately, two-flavour χPT [8] deals only with dy-
namical pions in a very limited range of energy. In order
to include K- and η-mesons dynamically and extend the
energy range of interest, one must use three-flavour χPT [9]
where the expansion in the three light quark masses starts
around the Nf = 3 vacuum mu = md = ms = 0. From
the above discussion, large vacuum fluctuations of s̄s pairs
should have a dramatic effect on Nf = 3 chiral expansions.
The leading-order (LO) term, which depends on the O(p2)
low-energy constants F 2(3) and Σ(3), would be damped.
On the other hand, next-to-leading-order (NLO) correc-
tions could be enhanced, in particular those related to
Zweig-rule violation in the scalar sector. For instance, the
Gell-Mann–Oakes–Renner relation would not be saturated
by its LO term and would receive sizeable numerical contri-
butions from terms counted as NLO in the chiral counting.

We called “instability of the expansion” such a numeri-
cal competition between terms of different chiral counting.
A näıve argument based on resonance saturation suggests
that higher orders in the chiral expansion should be sup-
pressed by powers of (Mπ/ΛH)2. However, such an argu-
ment does not apply to a leading-order contribution pro-
portional to Σ(3): there is no resonance that could saturate
the quark condensate. We expect therefore to encounter

1 This paramagnetic effect should matter only for observables
dominated by the infrared end of the Dirac spectrum such as
the quark condensate and the pseudoscalar decay constant. Ob-
servables unrelated to chiral symmetry (string tension, vector
sector) would hardly be affected by this effect and could be
described accurately through large-Nc techniques.

three-flavour chiral expansions with a good overall conver-
gence:

A = ALO + ANLO + AδA , δA � 1 , (8)

but the numerical balance between the leading-order ALO
and the next-to-leading-order ANLO depends on the im-
portance of vacuum fluctuations.

At the level of O(p4) Nf = 3 chiral perturbation theory,
the size of the vacuum fluctuations is encoded in the low-
energy constants (LECs) L4 and L6 whose values remain
largely unknown. For a long time, one set them to 0 at an
arbitrary hadronic scale (typically the η-mass) assuming
that the Zweig rule held in the scalar sector. More recent
but indirect analyses based on dispersive methods [10–12]
suggest values of L4 and L6 which look quite modest but are
enough to drive the three-flavour order parameters Σ(3)
and F 2(3) down to half of their two-flavour counterparts
Σ(2) and F 2(2). Obviously, these indirect hints of sizeable
vacuum fluctuations call for a more direct confirmation.

Unstable Nf = 3 chiral expansions (ALO ∼ ANLO) re-
quire a more careful treatment than in two-flavour χPT
where such instabilities do not occur. For instance, it would
be wrong to believe that the chiral expansion of 1/A con-
verges nicely2. This might induce the observed problems
of convergence in current two-loop computations [13, 14]:
the latter treat the fluctuations encoded in L4 and L6 as
small and are not designed to cope with a large violation of
the Zweig rule in the scalar sector, leading to instabilities
of the chiral series.

In a previous work [15], we proposed a framework to
deal with chiral expansions in the case of large fluctua-
tions, by picking up a subset of observables with (hopefully)
good convergence properties and resumming the fluctua-
tion terms containing the Zweig-rule violating LECs L4 and
L6. This framework includes consistently the alternatives
of large and small vacuum fluctuations.

Obviously, there is a price to pay for this extension:
some usual O(p4) relations cannot be exploited anymore,
because of our ignorance about their convergence. Let us
comment on a few novelties in our framework.
(1) Observables with a good convergence, (8), form a linear
space, which we identify with connected QCD correlators
away fromkinematic singularities. This choice promotesF 2

P
and F 2

P M2
P (P = π, K, η): LO and NLO may compete, but

there should be only a tiny contribution from NNLO and
higher. On the contrary, the chiral expansion of M2

P (ratio
of the former quantities) may exhibit a bad convergence.

In principle, two-loop computations could provide a
check of these assumptions. However, it is difficult to ex-
ploit available analyses [13,14] for two reasons:
(i) in the algebraic expressions, low-energy constants are
traded for physical quantities assuming that the chiral ex-
pansions of the latter are dominated numerically by the
LO contribution,

2 This would be equivalent to claim that 1/(1 + x) � 1 − x
is a reasonable approximation for x = O(1).
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(ii) the numerical results rely on a specific model of reso-
nance saturation for the O(p6) LECs3.

The dependence on these two assumptions should be
assessed before any definite conclusion can be drawn from
two-loop computations4. Obviously, if (8) were not followed
by F 2

P and F 2
P M2

P , but rather by other combinations of FP

and MP , some of our conclusions might be modified, but
this task is beyond the scope of the present paper.
(2) The three-flavour quark condensate and pseudoscalar
decay constant expressed in physical units:

X(3) =
2mΣ(3)
F 2

πM2
π

, Z(3) =
F 2(3)
F 2

π

, (9)

are free parameters. Constraints come from the vacuum
stability and the paramagnetic inequalities (5):

0 ≤ X(3) ≤ X(2) , 0 < Z(3) ≤ Z(2) , (10)

where the values of X(2) and Z(2) have been determined
from experiment; see (6) and (7).
(3) The quark mass ratio r = ms/m (m = mu = md)
cannot be fixed from M2

K/M2
π since we do not control the

convergence of its three-flavour chiral expansion. r becomes
a free parameter which can vary in the range:

r1 = 2
FKMK

FπMπ
− 1 ∼ 8 ≤ r ≤ r2 = 2

F 2
KM2

K

F 2
πM2

π

− 1 ∼ 36 .

(11)
The chiral expansions of F 2

πM2
π and F 2

KM2
K lead to a corre-

lation between r and X(2) [1]. Experimentally, the analysis
of ππ scattering phase shifts [4] shows that r > 14 (95%
CL), slightly favouring values between 20 and 25 [15].
(4) The agreement of the pseudoscalar spectrum with the
Gell-Mann–Okubo formula requires a fine tuning of L7.
Let us remark though that this fine tuning exists even in
the case of a dominant three-flavour quark condensate and
small vacuum fluctuations [15].
(5) One cannot determine LECs or combinations of LECs
through ratios of observables. For instance, one should not
use FK/Fπ to determine L5 because we do not know if the
chiral expansion of FK/Fπ converges at all.

There are some prospects of probing experimentally the
three-flavour sector and in particular the size of vacuum
fluctuations through πK scattering [12]. Unfortunately, the
current data are not precise enough to draw any definite
conclusion. On the other hand, recent progress achieved by

3 For instance, in the resonance models used in [13,14], SU(3)
breaking in quark masses is taken into account through a single
constant in the vector sector (fχ), and it is neglected in the
scalar sector (dm = 0).

4 Keeping in mind these issues, it remains an interesting
exercise to study the convergence of two-loop computations for
masses and decay constants. In Table 2 in [14], four sets are
considered which yield rather different results for the overall
convergence of FP , M2

P , F 2
P and F 2

P M2
P (P = π, K). Set B

exhibits small NNLO terms for FP , M2
P and F 2

P M2
P , but not

for F 2
P . In Fit 10, FP , F 2

P , F 2
P M2

P follow (8), but not M2
P . For

Set A and C, FP and M2
P converge, whereas F 2

P and F 2
P M2

P

suffer from large NNLO corrections.

lattice unquenched simulations [16] makes them an inter-
esting field to investigate the size of vacuum fluctuations.
For instance, lattice practitioners can vary very easily the
value of the quark masses.

A comment is in order at this point. From large-Nc con-
siderations, it is often assumed that quark-loop effects are
not significant, so that simulations with only two dynami-
cal flavours, or even none (quenched case), could be good
approximations to real QCD. We are precisely questioning
this assumption in the case of observables related to chi-
ral symmetry breaking. Thus, it is mandatory to perform
unquenched simulations with three dynamical flavours in
order to probe strange sea-quark effects on the pattern of
chiral symmetry breaking,

One could think of investigating directly the correla-
tions of Dirac eigenvalues, or the ms-dependence of the
quark condensate and pseudoscalar decay constant. How-
ever, this might prove rather challenging tasks since they
require simulations with three dynamical very light quarks.
In this paper, we investigate another way of probing the
size of vacuum fluctuations through the spectrum of the
theory. Indeed, this less immediate approach is easier to
follow with current lattice simulations. We believe that this
exercise might also be useful to illustrate some subtleties
arising in three-flavour chiral extrapolations when vacuum
fluctuations of ss̄ pairs are not negligible.

We are not going to address the issue of discretisa-
tion, which depends on the specific implementation of the
lattice action. We focus on chiral extrapolations with po-
tentially large vacuum fluctuations and on the impact of
finite-volume corrections. For definiteness, we work in the
isospin limit mu = md = m and we consider a lattice
simulation with (2 + 1) flavours: two flavours are set to a
common mass m̃, whereas the third one is kept at the same
mass as the physical strange quark ms. Each quantity X
observed in the physical situation (m, m, ms) has a lattice
counterpart X̃ for (m̃, m̃, ms).

We introduce the notation

q =
m̃

ms
, r =

ms

m
, (12)

X(3) =
2mΣ(3)
F 2

πM2
π

, Z(3) =
F 2(3)
F 2

π

, (13)

Y (3) =
X(3)
Z(3)

=
2mB0

M2
π

, (14)

where Σ(3) and F (3) are (the absolute values of) the quark
condensate and the pion decay constant in the Nf = 3
chiral limit, and B0 = Σ(3)/F (3)2. We take the following
values for the masses and decay constants: Fπ = 92.4 MeV,
FK/Fπ = 1.22, Mπ = 139.6 MeV, MK = 493.7 MeV,
Mη = 547 MeV.

1 Vacuum fluctuations at infinite volume

1.1 Bare expansions of masses and decay constants

We start by considering the impact of vacuum fluctuations
on the spectrum in the limit L → ∞. Since large vacuum
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fluctuations are allowed, the problems highlighted in the
introduction might arise. Therefore, we have to define the
appropriate observables to consider and the treatment of
their chiral expansion. We follow the procedure advocated
in [15], reexpressing it in an equivalent way convenient for
our purposes.
(1) Consider a subset of observables that are assumed to
have a good overall convergence – we call them “good
observables”. They must form a linear space, which we
choose to be that of connected QCD correlators (of vec-
tor/axial currents and their divergences) as functions of
external momenta, away from any kinematic singularities.
This rule selects in particular F 2

P and F 2
P M2

P .
(2) Take each observable and write its NLO chiral expan-
sion.
(3) In theses formulae, reexpand the physical quantities
(masses, decay constants, . . . ) in powers of quark masses
wherever the resulting dependence on the latter is polyno-
mial. Keep the physical quantities only in the non-analytic
terms (unitarity cuts, logarithmic divergences, . . . ). The
result is called “bare expansion”.
(4) In the bare expansions, reexpress O(p2) and O(p4)
LECs in terms of X(3), Z(3) and r using the exact Ward
identities for pseudoscalar masses and decay constants.

The first step is straightforward: one has to compute the
NLO chiral expansion of the masses and decay constants
of Goldstone bosons in an infinite volume with the quark
masses mu = md = m̃ and ms. The expressions can be
obtained directly from [9]. Then, we must reexpand the
physical quantities occuring in these formulae in terms of
the quark masses wherever the dependence is analytic. In
the case of F̃ 2

P and F̃ 2
P M̃2

P , the only issue lies in tadpole
contributions such as

M̃2
π

16π2 log
M̃2

π

µ2 . (15)

To obtain the bare expansions associated with F̃ 2
P and

F̃ 2
P M̃2

P , we keep the physical masses only in the (non-
analytic) logarithm but we expand the front factor in pow-
ers of quark masses. Hence, at the chiral order we are
working, the contribution from the pion tadpole has the
following bare expansion:

2m̃B0

16π2 log
M̃2

π

µ2 . (16)

In the bare expansion, the polynomial structure in the
quark masses is explicitly displayed, so that we can keep
track of the relative contribution of the LO, NLO, NNLO,
. . . terms.

The resulting bare expansions for the decay constants
(third step of our procedure) can be expressed in the fol-
lowing way:

F̃ 2
π

F 2
π

= Z(3) +
M2

π

F 2
π

qrY (3)
[
8

(
1
q

+ 2
)

Lr
4 + 8Lr

5

]
(17)

−M2
π

F 2
π

1
32π2 qrY (3)

[
4 log

M̃2
π

µ2 +
(

1
q

+ 1
)

log
M̃2

K

µ2

]

+
F̃ 2

π

F 2
π

ẽπ ,

F̃ 2
K

F 2
π

= Z(3) (18)

+
M2

π

F 2
π

qrY (3)
[
8

(
1
q

+ 2
)

Lr
4 + 4

(
1
q

+ 1
)

Lr
5

]

−M2
π

F 2
π

1
32π2 qrY (3)

×
[

3
2

log
M̃2

π

µ2 +
3
2

(
1
q

+ 1
)

log
M̃2

K

µ2

+
1
2

(
2
q

+ 1
)

log
M̃2

η

µ2

]

+
F̃ 2

K

F 2
π

ẽK ,

F̃ 2
η

F 2
π

= Z(3)] (19)

+
M2

π

F 2
π

qrY (3)
[
8

(
1
q

+ 2
)

Lr
4 +

8
3

(
2
q

+ 1
)

Lr
5

]

−M2
π

F 2
π

1
32π2 qrY (3) × 3

(
1
q

+ 1
)

log
M̃2

K

µ2 +
F̃ 2

η

F 2
π

ẽη ,

where ẽP are NNLO remainders of O(m2
q) (mq denotes

either ms or m̃). We have divided by the physical value of
F 2

π in order to deal with dimensionless quantities.
In a similar way, we obtain the bare expansions of

the masses:

F̃ 2
πM̃2

π

F 2
πM2

π

= qr

{
X(3) (20)

+
M2

π

F 2
π

qr[Y (3)]2
[
16

(
1
q

+ 2
)

Lr
6 + 16Lr

8

]

−M2
π

F 2
π

1
32π2 qr[Y (3)]2

×
[
3 log

M̃2
π

µ2

+
(

1
q

+ 1
)

log
M̃2

K

µ2 +
1
9

(
2
q

+ 1
)

log
M̃2

η

µ2

]}

+
F̃ 2

πM̃2
π

F 2
πM2

π

d̃π ,

F̃ 2
KM̃2

K

F 2
πM2

π

=
qr

2

(
1
q

+ 1
) {

X(3) (21)

+
M2

π

F 2
π

qr[Y (3)]2
[
16

(
1
q

+ 2
)

Lr
6 + 8

(
1
q

+ 1
)

Lr
8

]
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−M2
π

F 2
π

1
32π2 qr[Y (3)]2

×
[

3
2

log
M̃2

π

µ2

+
3
2

(
1
q

+ 1
)

log
M̃2

K

µ2 +
5
18

(
2
q

+ 1
)

log
M̃2

η

µ2

]}

+
F̃ 2

KM̃2
K

F 2
πM2

π

d̃K ,

F̃ 2
η M̃2

η

F 2
πM2

π

= qr

{
1
3

(
2
q

+ 1
)

(22)

×
(

X(3) +
M2

π

F 2
π

qr[Y (3)]2

×
[
16

(
1
q

+ 2
)

Lr
6 +

16
3

(
2
q

+ 1
)

Lr
8

]

−M2
π

F 2
π

1
32π2 qr[Y (3)]2

×
[
2

(
1
q

+ 1
)

log
M̃2

K

µ2 +
4
9

(
2
q

+ 1
)

log
M̃2

η

µ2

])

−M2
π

F 2
π

1
32π2 qr[Y (3)]2

×
[
log

M̃2
π

µ2

− 1
3

(
1
q

+ 1
)

log
M̃2

K

µ2 − 1
9

(
2
q

+ 1
)

log
M̃2

η

µ2

]

+
32
9

(
1
q

− 1
)2

M2
π

F 2
π

qr[Y (3)]2[3L7 + Lr
8]

}

+
F̃ 2

η M̃2
η

F 2
πM2

π

d̃η ,

where d̃P are NNLO remainders of O(m2
q). We have di-

vided by the physical value of F 2
πM2

π in order to deal with
dimensionless quantities.

1.2 Expression of O(p4) LECs

We must know perform the fourth step of our procedure.
As shown in [1, 10, 11, 15], one can reexpress the O(p4)
LECs L4, L5, L6, L8 in terms of [r, X(3), Z(3)] (and NNLO
remainders) using the four chiral expansions of F 2

P and
F 2

P M2
P (P = π, K) in the physical case. These quantities,

related to two-point functions of axial/vector currents and
of their divergences at vanishing momentum transfer, are
expected to have small NNLO remainders. One obtains [15]

Y (3)∆L4 =
1

8(r + 2)
F 2

π

M2
π

[1 − η(r) − Z(3) − e] , (23)

Y (3)∆L5 =
1
8

F 2
π

M2
π

[η(r) + e′] , (24)

Y 2(3)∆L6 =
1

16(r + 2)
F 2

π

M2
π

[1 − ε(r) − X(3) − d] , (25)

Y 2(3)∆L8 =
1
16

F 2
π

M2
π

[ε(r) + d′] . (26)

∆Li = Lr
i (µ)−L̂i(µ) combine the (renormalized and quark

mass independent) constants L4,5,6,8 and chiral logarithms
so that they are independent of the renormalisation scale µ:

32π2L̂4(µ) =
1
8

log
M2

K

µ2 (27)

− 1
8(r − 1)(r + 2)

×
[
(4r + 1) log

M2
K

M2
π

+ (2r + 1) log
M2

η

M2
K

]
,

32π2L̂5(µ) =
1
8

[
log

M2
K

µ2 + 2 log
M2

η

µ2

]
(28)

+
1

8(r − 1)

[
3 log

M2
η

M2
K

+ 5 log
M2

K

M2
π

]
,

32π2L̂6(µ) =
1
16

[
log

M2
K

µ2 +
2
9

log
M2

η

µ2

]
(29)

− 1
16

r

(r + 2)(r − 1)

[
3 log

M2
K

M2
π

+ log
M2

η

M2
K

]
,

32π2L̂8(µ) =
1
16

[
log

M2
K

µ2 +
2
3

log
M2

η

µ2

]
(30)

+
1

16(r − 1)

[
3 log

M2
K

M2
π

+ log
M2

η

M2
K

]
.

The right-hand side of (23)–(26) involves the r-depen-
dent functions:

ε(r) = 2
r2 − r

r2 − 1
, r2 = 2

(
FKMK

FπMπ

)2

− 1 ∼ 36 ,

(31)

η(r) =
2

r − 1

(
F 2

K

F 2
π

− 1
)

, (32)

whereas d, d′ and e, e′ are combinations of NNLO remain-
ders associated with the chiral expansions of π, K masses
and decay constants respectively. These remainders should
be small, and we are going to neglect them for all numerical
estimates in the following.

We stress that (23)–(26) are nothing more than a con-
venient reexpression of the Nf = 3 chiral expansions of
F 2

π , F 2
K , F 2

πM2
π , F 2

KM2
K . The latter can be easily recovered

through linear combinations of (23)–(26). For instance, the
chiral expansion of F 2

π [F 2
πM2

π ] is obtained when one com-
bines (23) and (24) [ (25) and (26)] to eliminate η(r)[ε(r)].
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Fig. 1. F̃ 2
π , F̃ 2

πM̃2
π and M̃2

π (respectively upper, middle and lower plots) normalized to their physical values as functions of
q = m̃/ms. The first (second) column corresponds to Z(3) = 0.8 (0.4). On each plot, full, long-dashed and dashed curves
correspond respectively to X(3) = 0.8, 0.4, 0.2. Thick (thin) lines are drawn for r = 30 (20). All NNLO remainders are neglected

1.3 Numerical results

To exploit the previous formulae, we have to fix the values
of r, X(3), Z(3). Since these parameters are only weakly
constrained by experimental data, we will vary them in the
ranges r = 20, 30, Z(3) = 0.4, 0.8 and X(3) = 0.2, 0.4, 0.8.
In each “physical” situation, we study how the masses and
decay constants of the simulated π and K vary with q,
neglecting all NNLO remainders for the moment.

A slight computational difficulty arises: in (17)–(22),
the logarithmic NLO corrections involve the values of the
simulated masses M̃2

P . We could solve iteratively the sys-
tem of equations to determine these masses. However, two
iterations turn out to achieve a sufficient numerical accu-

racy. This corresponds to an easier procedure:
(i) compute M̂2

P defined from (17)–(22) with M̃2
P replaced

by M2
P on their right-hand side,

(ii) consider (17)–(22) again, with M̃2
P replaced by M̂2

P on
their right-hand side,
(iii) the resulting values for the pseudoscalar masses are
equal to M̃2

P up to a tiny error.
In Figs. 1 and 2 we have plotted F̃ 2

P , F̃ 2
P M̃2

P and M̃2
P

(P = π, K) as functions of q = m̃/ms in an infinite volume,
neglecting all NNLO remainders. For each observable, the
first column corresponds to Z(3) = 0.8, the second one to
Z(3) = 0.4. On each plot, the curves correspond to different
values of X(3) [full: 0.8, long-dashed: 0.4, dashed: 0.2] and
of r [thick: r = 30, thin: r = 20].
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Fig. 2. F̃ 2
K , F̃ 2

KM̃2
K and M̃2

K (respectively upper, middle and lower plots) normalised to their physical values as functions
of q = m̃/ms. The first (second) column corresponds to Z(3) = 0.8 (0.4). On each plot, full, long-dashed and dashed curves
correspond respectively to X(3) = 0.8, 0.4, 0.2. Thick (thin) lines are drawn for r = 30 (20). All NNLO remainders are neglected

A few comments are in order.
(1) Our choice of normalisation imposes that all the curves
intersect at the physical point m̃ = m where

q =
1
r

,
X̃

X
= 1 . (33)

(2) If Y (3) > 1, vacuum instability may occur: the pion
mass becomes negative for “large” masses [q = O(1)]. This
situation would occur if vacuum fluctuations had a more
significant impact on the decay constant than on the con-
densate: the first would decrease more quickly than the lat-
ter from the physical case to the three-flavour chiral limit.

Actually, this situation seems unlikely. A non-vanishing
F 2 is equivalent to the spontaneous breakdown of chiral

symmetry. Other chiral order parameters (like Σ) may or
may not vanish depending on the breaking pattern. We
expect therefore F 2 to be the last chiral order parameter
to vanish, after or together with all the other parameters
(e.g., Σ), and thus Y (3) ≤ 1. The analysis of some prop-
erties of the small Dirac eigenvalues suggests the same
conclusion [2, 3].

Even though this theoretical expectation has not been
checked experimentally yet, we dismiss the case Y (3) ≥ 1
(unphysical in our opinion) in the remainder of this article.
(3) On the plots, very small values of X(3) do not neces-
sarily correspond to almost vanishing pion masses. Indeed,
we take into account at least two different sources of chiral
symmetry breaking: quark condensation Σ(3) and vacuum
fluctuations L4, L6. For X(3) = 0, chiral symmetry break-
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ing may still be triggered by the fluctuations encoded in L6,
and the simulated pion mass may remain rather massive
for m̃ �= 0 .
(4) The pseudoscalar masses M2

P are not the best candi-
dates to observe a curvature due to chiral logarithms. The
m̃-dependence is hardly different from a polynomial one.
In addition, X(3) must be much smaller than 1 to observe
a variation in the curvature.

2 Finite-volume effects

2.1 NLO chiral expansions

The lattice simulations are performed in a finite spatial box,
whereas time is sent to infinity to single out the ground
state. For sufficiently large boxes (L 
 1/ΛH), the Gold-
stone modes remain the only relevant degrees of freedom,
whose interactions can be described through a low-energy
effective theory [17]. In the case of periodic boundary condi-
tions, this effective theory is identical toχPT,with the same
values of the LECs as in an infinite volume. In addition, if
the box size is large enough compared to the inverse Comp-
ton length of the pion [17–19], the so-called p-expansion is
valid and the only difference from the infinite-volume case
shows up in the propagators of the Goldstone modes. This
affects only the tadpole logarithms in the formulae of the
previous section:

M̃2
P

16π2 log
M̃2

P

µ2 → 1
2L3

∑
�

1
ωP

, (34)

where

� ∈ 2π
L

× Z3 , ωP =
√

�2 + M̃2
P . (35)

We obtain for the decay constants

F̃ 2
π

F 2
π

= Z(3) +
M2

π

F 2
π

qrY (3)
[
8

(
1
q

+ 2
)

Lr
4 + 8Lr

5

]

− 1
4F 2

πL3 [4σ̃π + 2σ̃K ] , (36)

F̃ 2
K

F 2
π

= Z(3) (37)

+
M2

π

F 2
π

qrY (3)
[
8

(
1
q

+ 2
)

Lr
4 + 4

(
1
q

+ 1
)

Lr
5

]

− 1
4F 2

πL3

[
3
2

σ̃π + 3σ̃K +
3
2

σ̃η

]
,

where
σ̃P =

∑
�

1√
�2 + M̃2

P

. (38)

In a similar way, we obtain for the masses

F̃ 2
πM̃2

π

F 2
πM2

π

(39)

= qr

{
X(3) +

M2
π

F 2
π

qr[Y (3)]2
[
16

(
1
q

+ 2
)

Lr
6 + 16Lr

8

]

− Y (3)
4F 2

πL3

[
3σ̃π + 2σ̃K +

1
3

σ̃η

]}
,

F̃ 2
KM̃2

K

F 2
πM2

π

=
qr

2

(
1
q

+ 1
)

(40)

×
{

X(3) +
M2

π

F 2
π

qr[Y (3)]2

×
[
16

(
1
q

+ 2
)

Lr
6 + 8

(
1
q

+ 1
)

Lr
8

]

− Y (3)
4F 2

πL3

[
3
2

σ̃π + 3σ̃K +
5
6

σ̃η

]}
.

2.2 Bare expansions at finite volume

The above NLO chiral expansions are not bare expansions
yet. We must reexpand the physical masses in powers of
quark masses wherever the dependence on the latter is
polynomial. Therefore, we have to identify the non-analytic
pieces in the tadpole term σ̃, which are a logarithm due
to ultraviolet divergences and a pole due to infrared diver-
gences.

Since the (finite-volume) tadpole sum and the (infinite-
volume) integral share the same ultraviolet divergences, it
is convenient to introduce their difference [20]:

ξs(L, M2) =
1
L3

∑
�

1
(�2 + M2)s

(41)

−
√

4πΓ (s + 1/2)
Γ (s)

∫
d4qE

(2π)4
1

(q2
E + M2)s+1/2 .

ξ can be evaluated as an integral of known mathematical
functions [19]:

ξs(L, M2) (42)

=
1

(4π)3/2Γ (s)

∫ ∞

0
dττ s−5/2e−τM2

[
θ3

(
L3

4τ

)
− 1

]
.

In order to turn the previous NLO chiral expansions
into bare expansions, we can isolate the non-analytic pieces
in σ̃P and expand the rest in powers of quark masses:

σ̃P

L3 =
M̃2

P

8π2 log
M̃2

P

µ2 + ξ1/2(L, M̃2
P )

→ LO(M̃2
P )

8π2 log
M̃2

P

µ2 +
1

L3M̃P

(43)

+
LO(M̃2

P )
8π2 log

LO(M̃2
P )

M̃2
P

+


ξ1/2(L,LO(M̃2

P )) − 1

L3
√

LO(M̃2
P )


 ,
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where LO[M2
P ] denotes the leading-order contribution to

the meson mass:

LO[M̃2
π ] = qrY (3)M2

π , (44)

LO[M̃2
K ] =

(q + 1)r
2

Y (3)M2
π , (45)

LO[M̃2
η ] =

(q + 2)r
3

Y (3)M2
π . (46)

In Appendix Appendix A:, we check that all the non-
analytic dependence on M̃2

P in σ̃P comes from the first
two terms in (43), whereas the last (bracketed) is analytic
in LO(M̃2

P ). We could take (43) as the bare expansion of
σ̃P . However, a further simplification can be performed:
the (last) logarithmic term in (43) is small whatever the
size of the fluctuations and contributes to σ̃P only at NLO.
We choose to absorb these terms in the NNLO remainders
of the masses and decay constants and to define the bare
expansion of σ̃P through

σ̃P

L3 =
LO(M̃2

P )
8π2 log

M̃2
P

µ2 +
1

L3M̃P

(47)

+


ξ1/2(L,LO(M̃2

P )) − 1

L3
√

LO(M̃2
P )


 + . . .

where the ellipsis denotes O(p4) terms that are absorbed
in the NNLO remainders.

First, let us notice that we recover the results of the
previous section in the large-volume limit: only the first
term in (47) survives, which is exactly the bare expansion
of the infinite-volume tadpoles discussed in Sect. 1.1. In
addition, this choice for the bare expansion settles related
issues concerning the convergence of the expansion at finite
volume. χPT in a finite box can be consistently formulated
in three different regimes, called p-, ε- and δ-expansions,
depending on the relative sizes of the box sides and the
pion mass [17]. In particular, the p-expansion used here
holds if

FπL 
 1 , MπL 
 1 . (48)

If the second condition is violated, the pion is too large to
be contained in the box: the breakdown of the p-expansion
is flagged by infrared divergences. In the case of small
fluctuations, quark condensation is responsible for Nf = 3
chiral symmetry breaking. The second condition in (48) is
translated into 2mB0L

2 = LO(M2
π) × L2 
 1. If either m

or B0 are too small compared to the size of the box, the
condition is violated and infrared divergences occur in σ̃P .

In the case of large fluctuations, the second condition
in (48) has a different interpretation. We do not assume any
specific mechanism for Nf = 3 chiral symmetry breaking.
For non-vanishing quark masses, B0 may be small without
leading to a small pion mass: for instance, in the limit case
B0 → 0, a significant pion mass can be generated by the
vacuum fluctuations encoded in L6 and L4. Therefore, a
small pion mass is obtained only if the quarks are light
enough, and the p-expansion must break down for m too
small but not for B0 too small. One can check that the

proposed bare expansion of σ̃P exhibits an infrared diver-
gence when m → 0, but not B0 → 0. In other words, even a
very small three-flavour quark condensate does not lead to
the breakdown of the p-expansion if vacuum fluctuations
are significant enough.

We could now take the NLO finite-volume expressions
for the masses and decay constants, perform the replace-
ment in (47) and study the resulting expressions. However,
we are mainly interested in the finite-volume corrections
to the infinite-volume estimates:

∆(X) =
X̃(L) − X̃(∞)

X̃(∞)
. (49)

We obtain the following results for the decay constants:

∆(F 2
π ) = − 1

4F̃ 2
π (∞)

[
4Ξ̃π + 2Ξ̃K

]
, (50)

∆(F 2
K) = − 1

4F̃ 2
K(∞)

[
3
2

Ξ̃π + 3Ξ̃K +
3
2

Ξ̃η

]
,

where

Ξ̃P = ξ1/2(L,LO[M̃2
P ]) − 1

L3
√

LO(M̃2
P )

+
1

L3M̃P

. (51)

In a similar way, we obtain for the masses

∆(F 2
πM2

π) (52)

= − qrY (3)
4F̃ 2

π (∞)
M2

π

M̃2
π(∞)

[
3Ξ̃π + 2Ξ̃K +

1
3

Ξ̃η

]
,

∆(F 2
KM2

K) (53)

= − (q + 1)rY (3)
8F̃ 2

K(∞)
M2

K

M̃2
K(∞)

[
3
2

Ξ̃π + 3Ξ̃K +
5
6

Ξ̃η

]}
.

2.3 Size of the finite-volume corrections

We begin with a sample plot of the finite-volume correc-
tions. In Fig. 3, ∆(F 2

π ) and ∆(F 2
πM2

π) are plotted as func-
tions of q for the specific choice of parameters r = 25 and
Z(3) = 0.8. The left (right) column corresponds to L =
1.5 fm (2.5 fm), corresponding to MπL = 1.1 (MπL = 1.8).
The thick full, full, long-dashed and dashed curves corre-
spond to X(3) = 0, 0.2, 0.4, 0.8 respectively. For X(3) = 0,
the finite-volume correction toF 2

πM2
π vanishes at this order;

see (52).
We see that the corrections are very significant for

L = 1.5 fm, but much smaller for L = 2.5 fm. In addi-
tion the corrections are smaller for F 2

πM2
π than for the

decay constant. Indeed, the finite-volume chiral expansion
of F 2

πM2
π contain an additional factor LO(M̃2

π) multiplying
the tadpole terms σ̃P . This tames the infrared divergences
occurring when the pion mass is too small compared to size
of the box. This damping factor is absent in the expansion
of the decay constants.
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Fig. 3. The relative finite-volume correction to F̃ 2
π (upper plots) and F̃ 2

πM̃2
π (lower plots). The left (right) column corresponds

to L = 1.5 fm (2.5 fm). We set r = 25, Z(3) = 0.8. The thick full, full, long-dashed and dashed curves correspond to X(3) =
0, 0.2, 0.4, 0.8, respectively

We want the finite-volume corrections to remain small
over a reasonable range of variation for q. Noticing that
the size of the corrections is weakly dependent on Z(3),
we introduce the quantity

D(X̃) = Max
∣∣∣∆(X̃)

∣∣∣
{

0.1 ≤ q ≤ 1,

0 < Z(3) ≤ 1,
(54)

whose size we investigate as a function of r and Y (3) for
L = 2 and 2.5 fm, corresponding respectively to MπL = 1.4
and MπL = 1.8. In Figs. 4 and 5, black regions correspond
to D smaller than 5%, increasingly lighter regions to D
smaller than 10, 20 and 40% respectively.

We observe the expected decrease of the finite-volume
effects when the size of the box increases. Once again, we
notice that the corrections to F 2

P M2
P are much smaller than

those to the decay constants, due to a better behaviour at
the approach of the infrared region. F 2

P M2
P (P = π, K)

in large volumes (L = 2.5 fm) is a quantity for which we
manage a good control of finite-volume effects.

3 Constraining three-flavour order parameters
on the lattice

For definiteness, we take a volume of size L = 2.5 fm and set
r = 25. However, we must keep in mind that the latter is a
parameter which may vary between 15 and approximately
35.The qualitative conclusions thatwe are about to drawdo

not depend on the exact values of r, but one observes small
shifts in the following plots when r is varied in its range.

We take into account the remainders associatedwith the
simulated masses and decay constants ẽP and d̃P (but not
the indirect remainders d, d′, e, e′). As a rule of thumb [15],
we estimate the size of NNLO remainders in the physical
case by attributing a 30% (10%) effect to an ms (m) factor,
which leads toO(m2

s)∼10%,O(mms)∼3%andO(m2)∼1%.
For lattice simulations where m̃ varies, we take the

following estimate:

d̃K ∼ ẽK = O(m̃ms) ∼ 0.10q1/3 , (55)

d̃K ∼ ẽπ = O(m2
s) ∼ 0.10 , (56)

in order to recover the physical case, i.e. O(m̃ms)  0.10
for m̃ = ms (q = 1) and O(m̃ms)  0.03 for m̃ = m
(q = 1/r).

Figures 6 and 7 show the pseudoscalar decay constants
and masses as functions of the quark mass ratio q = m̃/ms.
The left column corresponds to Z(3) = 0.8, the right one
to Z(3) = 0.4. On each plot, the various bands show the
impact of NNLO uncertainties for different values of X(3)
[full: 0.8, long-dashed: 0.4, dashed: 0.2]. We plot the re-
sults only when the finite-volume effects are smaller than
10%, but we do not include these corrections in the quan-
tities plotted.

At small q, the pion mass becomes too light, the finite-
volume effects become larger than 10%, and we cannot
trust the corresponding results because of potentially large
higher-order corrections (in such a case, we set the result
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Fig. 4. The maximal finite-volume corrections D(F̃ 2
π ) (upper plots) and D(F̃ 2

πM̃2
π) (lower plots) as functions of r and Y (3).

The left (right) column corresponds to L = 2 fm (2.5 fm). Black domains correspond to D smaller than 5%, increasingly lighter
domains to D smaller than 10, 20 and 40%, respectively

to 0 on the plots). In particular the upper left plot in
Fig. 6 [F̃ 2

π/F 2
π for Z(3) = 0.8], where q must be rather

large to tame finite-volume effects, confirms that the chiral
expansions of the decay constants may suffer from sizeable
uncertainties at small simulated masses because of large
finite-volume corrections.

From the previous analysis, the sensitivity to the three-
flavour order parameters through the curvature seems more
important in the case of the masses (which have smaller
finite-volume corrections as well). We can isolate this effect
by considering the dimensionless ratios

Rπ =
1
q

F̃ 2
πM̃2

π

F 2
πM2

π

, RK =
2

(q + 1)
F̃ 2

KM̃2
K

F 2
KM2

K

. (57)

Figures 8 and 9 indicate that these two ratios can pro-
vide a way of constraining the size of vacuum fluctuations
by varying q from 1/r to 1. The larger r, the easier the dis-
tinction between small and large fluctuations, even though
the uncertainties due to NNLO remainders increase at the
same time.

4 Conclusion

The presence of massive ss̄ pairs in QCD vacuum may
induce significant differences in the pattern of chiral sym-
metry breaking between Nf = 2 and Nf = 3 chiral limits,
i.e., when ms remains at its physical mass and when ms is
set to 0. This effect, related to the violation of the Zweig
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Fig. 5. The maximal finite-volume corrections D(F̃ 2
K) (upper plots) and D(F̃ 2

KM̃2
K) (lower plots) as functions of r and Y (3).

The left (right) column corresponds to L = 2 fm (2.5 fm). Black domains correspond to D smaller than 5%, increasingly lighter
domains to D smaller than 10, 20 and 40% respectively

rule in the scalar sector, may destabilise three-flavour chi-
ral expansions numerically, by damping leading-order (LO)
terms proportional to Σ(3) and F 2(3), and by enhancing
next-to-leading-order (NNLO) terms containing the O(p4)
Zweig-rule violating low-energy constants L4 and L6. In
such a case, a more careful treatement of chiral expansions
is required to avoid uncontrolled corrections from higher
chiral orders.

In a previous work [15], we proposed a consistent frame-
work to take into account the possibility of large vacuum
fluctuations. Indirect hints from dispersive estimates [10–
12] suggest that this effect might be significant, but an ex-
perimental determination has not been achieved yet. In this
paper, we proposed to probe the size of ss̄-pairs fluctuations

through lattice simulations with three dynamical flavours,
with a strange quark at its physical mass ms and two lighter
flavours of mass m̃. We focused on the masses and decay
constants of the pions and kaons, and worked out chiral
expansions which should exhibit small NNLO remainders
even when LO and NLO terms compete numerically. The
dependence of these observables on m̃ can provide useful
constraints on the structure of the Nf = 3 chiral vacuum,
and in particular on the size of vacuum fluctuations. Con-
versely, this dependence on vacuum fluctuations should
stand as a warning about three-flavour chiral extrapola-
tions on the lattice, which might prove more delicate to
handle than usually assumed if vacuum fluctuations of ss̄
pairs are significant.
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with Z(3) = 0.8 (0.4). On each plot, full, long-dashed and dashed bands correspond respectively to X(3) = 0.8, 0.4, 0.2. Cases
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We have also estimated the corrections due to the finite
spatial dimensions used in the lattice simulation. As ex-
pected, large volumes (L ∼ 2.5 fm) are required to prevent
these corrections from spoiling the predictivity of the chiral
expansions in the p-regime. These corrections do not seem
enhanced in the case of large vacuum fluctuations for the
observables considered here.

Finally, we isolated two dimensionless ratios based on
F 2

πM2
π and F 2

KM2
K showing interesting features. They are

not affected very strongly by finite-volume corrections, and
their dependence on m̃ could provide interesting insights
at the size of vacuum fluctuations. Therefore, it would be
rather interesting to perform a lattice study of these ratios
with three dynamical flavours, a reasonably large spatial
box, and an action with good chiral properties. The results
might shed some light on the pattern of Nf = 3 chiral
symmetry breaking and the low-energy dynamics of QCD.
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Appendix A: Bare expansion of finite-volume
tadpoles

The finite-volume tadpole σ̃P is related to its infinite-vol-
ume counterpart through ξ1/2 which can be reexpressed as

ξ1/2(L, M2) = 2 lim
Lt→∞

g
(4)
1 =

1√
π

g
(3)
1/2 , (58)

where g
(d)
r has been introduced in Appendix A of [20], and

the zero-temperature limit is given in (B.1) of the same ref-
erence5.

From Appendix B of [20], it is straightforward to de-
termine the expansion of g

(3)
1/2 in powers of M :

g
(3)
1/2 =

1√
4πL2

(60)

5 We take this opportunity to correct a typo in this equation,
which should read

lim
Ld→∞

g(d)
r =

g
(d−1)
r−1/2√

4π
. (59)
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×
[

2π
ML

− M2L2

4π
log(M2L2) +

∞∑
n=0

γn

n!
(ML)2n

]
,

γn =
(

− 1
4π

)n [
αn+1/2 +

3
(2n + 1)(n − 1)

]
, n �= 1 ,

(61)

γ1 = − 1
4π

[
α3/2 − Γ ′(1) − log(4π) − 5

3

]
, (62)

with αn+1/2 are known numerical coefficients (the first few
are displayed in Table 1 of [20]).

This leads to the following expansion of ξ1/2(L, M):

ξ1/2(L, M2) =
1

ML3 − M2

8π2 log(M2L2) (63)

+
1
2π

∞∑
n=0

γn

n!
M2nL2n−2 .

Thus, the non-analytic dependence of σ̃P on LO(M̃2
P )

comes only from the pole and the logarithm singled out
in (43). According to our prescription, the bare expansion
is obtained once the polynomial terms are reexpanded in

powers of quark masses. At our order of accuracy, this
amounts to replacing M̃2

P by LO(M̃2
P ) in the polynomial

pieces, i.e.:

σ̃P

L3 =
M̃2

P

8π2 log
M̃2

P

µ2 + ξ1/2(L, M̃2
P ) (64)

→ LO(M̃2
P )

8π2 log
M̃2

P

µ2

+

{
1

M̃P L3
− LO(M̃2

P )
8π2 log(M̃2

P L2)

+
1
2π

∞∑
n=0

γn

n!
[LO(M̃2

P )]nL2n−2

}

=
LO(M̃2

P )
8π2 log

M̃2
P

µ2 +
1

M̃P L3

− LO(M̃2
P )

8π2 log(M̃2
P L2)

+
LO(M̃2

P )
8π2 log[LO(M̃2

P )L2]
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+


ξ1/2(L,LO(M̃2

P )) − 1√
LO(M̃P L3)




=
LO(M̃2

P )
8π2 log

M̃2
P

µ2 +
1

M̃P L3

+
LO(M̃P )

8π2 log
LO(M̃2

P )
M̃2

P

+


ξ1/2(L,LO(M̃2

P )) − 1√
LO(M̃P )L3


 .

The bracketed term has only a polynomial dependence on
LO(M̃2

P ). This expression yields (47) and the bare expan-
sion of σ̃P .
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